近日,據(jù)國(guó)際知名期刊Advanced Materials(《先進(jìn)材料》)報(bào)道,中國(guó)科學(xué)院化學(xué)研究所光化學(xué)院重點(diǎn)實(shí)驗(yàn)室趙永生課題組利用高比表面積的一維納米材料,制備出一種更加靈敏的電化學(xué)發(fā)光納米生物傳感器。該項(xiàng)研究也為低維納米材料制備生物傳感器提供了重要的理論和實(shí)驗(yàn)依據(jù)。
趙永生對(duì)《中國(guó)科學(xué)報(bào)》記者表示,隨著科技的進(jìn)步,傳感器和光學(xué)元件都將趨于小型化和集成化。有機(jī)低維納米材料由于其獨(dú)特的結(jié)構(gòu)和新穎的物理、化學(xué)性質(zhì),在生物傳感、納米光子學(xué)領(lǐng)域中展現(xiàn)出廣闊的應(yīng)用前景。
納米材料提高檢測(cè)性能
從細(xì)菌到人,所有生物都在使用“生物分子開關(guān)”來(lái)監(jiān)測(cè)環(huán)境。此類“開關(guān)”,即由RNA或蛋白制成、可改變形狀的分子。這些“分子開關(guān)”的誘人之處在于:它們很小,足以在細(xì)胞內(nèi)“辦公”,而且非常有針對(duì)性,足以應(yīng)付非常復(fù)雜的環(huán)境。
受到這些天然“開關(guān)”的啟發(fā),納米生物傳感器應(yīng)運(yùn)而生。
據(jù)趙永生介紹,生物傳感器是用固定化的生物體成分,如酶、抗原、抗體、激素等,或者是生物體本身的細(xì)胞、細(xì)胞器、組織等作為傳感元件制成的傳感器。
按所用分子識(shí)別元件的不同,生物傳感器可分為酶?jìng)鞲衅鳌⑽⑸飩鞲衅、組織傳感器、細(xì)胞器傳感器、免疫傳感器等;按信號(hào)轉(zhuǎn)換元件的不同可分為電化學(xué)生物傳感器、半導(dǎo)體生物傳感器、測(cè)熱型生物傳感器、測(cè)光型生物傳感器、測(cè)聲型生物傳感器等。
其中,電化學(xué)生物傳感器由于具有體積小、分辨率高、響應(yīng)時(shí)間短、所需樣品少、對(duì)活細(xì)胞損傷小等特點(diǎn),廣泛應(yīng)用于醫(yī)藥工業(yè)、食品檢測(cè)和環(huán)境保護(hù)等領(lǐng)域。
如今,納米技術(shù)的介入更是為電化學(xué)生物傳感器的發(fā)展提供了新的活力。
趙永生稱,納米材料具有小尺寸效應(yīng)、表面效應(yīng)、量子尺寸效應(yīng)及宏觀量子隧道效應(yīng)等,使得其表現(xiàn)出奇異的化學(xué)、物理性質(zhì)。
例如常見的碳納米材料,特別是碳納米管、石墨烯等,就表現(xiàn)出優(yōu)良的力學(xué)性能、導(dǎo)電性能、表面性能及獨(dú)特的電化學(xué)性質(zhì)。
此前,研究人員就曾用瓊脂糖將葡萄糖氧化酶和連接了二茂鐵的單壁碳納米管固定在玻碳電極表面,實(shí)現(xiàn)了對(duì)葡萄糖的快速靈敏檢測(cè)。碳納米管的引入還能夠顯著提高電化學(xué)敏感膜中電活性物質(zhì)的氧化還原可逆性,同時(shí)消除了溶解氧對(duì)測(cè)定的干擾。
在趙永生看來(lái),納米材料應(yīng)用于電化學(xué)生物傳感器領(lǐng)域后,不僅提高了傳感器的檢測(cè)性能,而且提升了傳感器的化學(xué)和物理性質(zhì)以及它對(duì)生物分子或細(xì)胞的檢測(cè)靈敏度,檢測(cè)時(shí)間也得以縮短,與此同時(shí)還實(shí)現(xiàn)了高通量的實(shí)時(shí)分析檢測(cè)。
低維有機(jī)材料成新寵
在電化學(xué)納米生物傳感器的研究中,電化學(xué)發(fā)光由于具有較高的穩(wěn)定性和較低的背景信號(hào),其在檢測(cè)中的應(yīng)用也成為科學(xué)家的興趣點(diǎn)。
通過電化學(xué)氧化和還原的納米材料,在電極表面可以和共反應(yīng)劑反應(yīng),從而產(chǎn)生電化學(xué)發(fā)光。
趙永生課題組的研究人員在電化學(xué)發(fā)光傳感體系中引入低維納米材料——釕聯(lián)吡啶納米線作為發(fā)光探針修飾電極,并通過還原氧化石墨烯有效增強(qiáng)電化學(xué)發(fā)光,實(shí)現(xiàn)了對(duì)生物分子多巴胺的高效、靈敏檢測(cè)。
趙永生表示,與此前報(bào)道的利用石墨烯—?dú)ぞ厶切揎楇姌O在抗壞血酸和尿酸的共存下檢測(cè)多巴胺(5×10-6M 到2×10-4M)相比,上述傳感器對(duì)多巴胺的檢測(cè)具有更寬的檢測(cè)范圍(1×10-5M到1×10-12M)。
“而這也說(shuō)明低維納米材料使傳感器的靈敏度更高、尺寸更小、響應(yīng)更快,以及對(duì)被測(cè)樣品的需求量更少!壁w永生說(shuō)。
此后,為了降低反應(yīng)試劑的消耗,簡(jiǎn)化實(shí)驗(yàn)設(shè)計(jì),該課題組又制備出有機(jī)核/殼納米結(jié)構(gòu)的可再生納米生物傳感器。
研究人員用9-二苯乙炔基蒽、10-二苯乙炔基蒽(BPEA)單晶納米線作為芯層,用對(duì)H2O2敏感的過氧草酸酯衍生物CPPO作為殼層,通過化學(xué)發(fā)光實(shí)驗(yàn)證明了殼層對(duì)H2O2氣體有超靈敏和高選擇性的響應(yīng)。
在此基礎(chǔ)上,研究人員還利用核殼之間的消逝波耦合有效地放大了納米線與H2O2氣體的化學(xué)反應(yīng),構(gòu)筑了有機(jī)核/殼納米結(jié)構(gòu)的光波導(dǎo)傳感器,從而實(shí)現(xiàn)了對(duì)H2O2氣體的快速、高靈敏、高選擇性的原位檢測(cè)。
“這項(xiàng)研究進(jìn)一步凸顯了利用高比表面積的一維納米材料制備生物傳感器,可以提高傳感器的靈敏度!壁w永生說(shuō),下一步,他們還將利用一維納米材料構(gòu)建納米光子學(xué)生物傳感器相關(guān)器件,實(shí)現(xiàn)納米材料、光子學(xué)以及生物學(xué)三者的完美結(jié)合。
未來(lái)發(fā)展趨勢(shì)
隨著納米技術(shù)和生物傳感器交叉融合的發(fā)展,越來(lái)越多的新型納米生物傳感器涌現(xiàn)出來(lái),如量子點(diǎn)、DNA、寡核苷配體等納米生物傳感器。
在趙永生看來(lái),未來(lái)納米生物傳感器的發(fā)展方向應(yīng)該是集成多功能、便攜式、一次性的快速檢測(cè)分析機(jī)器,它可以廣泛用于食品、環(huán)境、戰(zhàn)場(chǎng)、人體疾病等領(lǐng)域的快速檢測(cè)。
例如,食品和飲料中病原體或者農(nóng)藥殘留成分的快速靈敏檢測(cè);環(huán)境中污染氣體或者污染金屬離子等遠(yuǎn)程檢測(cè)和控制;人體血液成分和病原體的快速實(shí)時(shí)檢測(cè),以及戰(zhàn)場(chǎng)生化武器和爆炸物的快速檢測(cè)。
但新一代納米生物傳感器同樣面臨諸多挑戰(zhàn),如更高靈敏度、