以單片機AT89C51為控制核心,將半導體制冷技術引入到LED散熱研究中,采用PID算法和PWM調制技術實現對半導體制冷片的輸入電壓的控制,進而實現了對半導體制冷功率的控制,通過實驗驗證了該方法的可行性。
隨著LED技術日新月異的發(fā)展,LED已經走進普通照明的市場。然而,LED照明系統(tǒng)的發(fā)展在很大程度上受到散熱問題的影響。對于大功率LED而言,散熱問題已經成為制約其發(fā)展的一個瓶頸問題。而半導體制冷技術具有體積小、無須添加制冷劑、結構簡單、無噪聲和穩(wěn)定可靠等優(yōu)點,隨著半導體材料技術的進步,以及高熱電轉換材料的發(fā)現,利用半導體制冷技術來解決LED照明系統(tǒng)的散熱問題,將具有很現實的意義。
1 LED熱量產生的原因及熱量對LED性能的影響
LED 在正向電壓下,電子從電源獲得能量,在電場的驅動下,克服PN 結的電場,由N 區(qū)躍遷到P 區(qū),這些電子與P 區(qū)的空穴發(fā)生復合。由于漂移到P 區(qū)的自由電子具有高于P 區(qū)價電子的能量,復合時電子回到低能量態(tài),多余的能量以光子的形式放出。然而,釋放出的光子只有30%~40%轉化為光能,其余的60%~70%則以點振動的形式轉化為熱能。
由于LED是半導體發(fā)光器件,而半導體器件隨溫度的變化自身發(fā)生變化,從而其固有的特性會發(fā)生明顯的變化。對于LED結溫的升高會導致器件性能的變化和衰減。這種變化主要體現在以下三個方面:⑴減少LED的外量子效率;⑵縮短LED的壽命;⑶造成LED發(fā)出光的主波長發(fā)生偏移,從而導致光源的顏色發(fā)生偏移。大功率LED一般都用超過1W的電功率輸入,其產生的熱量很大,解決其散熱問題是當務之急。
2半導體制冷原理
半導體制冷又稱電子制冷,或者溫差電制冷,是從50年代發(fā)展起來的一門介于制冷技術和半導體技術邊緣的學科,與壓縮式制冷和吸收式制冷并稱為世界三大制冷方式。半導體制冷器的基本器件是熱電偶對,即把一只N型半導體和一只P型半導體連接成熱電偶(如圖1),通上直流電后,在接口處就會產生溫差和熱量的轉移。在電路上串聯起若干對半導體熱電偶對,而傳熱方面是并聯的,這樣就構成了一個常見的制冷熱電堆。借助于熱交換器等各種傳熱手段,是熱電堆的熱端不斷散熱并且保持一定的溫度,而把熱電堆的冷端放到工作環(huán)境中去吸熱降溫,這就是半導體制冷的原理。
圖1 半導體制冷片TEC結構
本文采用半導體制冷是因為與其他的制冷系統(tǒng)相比,沒有機械轉動部分、無需制冷劑、無污染可靠性高、壽命長而且易于控制,體積和功率都可以做的很小,非常適合在LED有限的工作空間里應用。
3系統(tǒng)總體設計方案
LED散熱控制系統(tǒng)由溫度設定模塊、復位模塊、顯示模塊、溫度采集模塊、控制電路模塊[2]及制冷模塊組成,系統(tǒng)總體框圖如圖1所示。該系統(tǒng)以微處理器為控制核心,與溫度采集模塊通信采集被控對象的實時溫度,與溫度設定模塊通信設定制冷啟動溫度和強制冷溫度。利用C語言對未處理編程可實現,當采集的實時溫度小于制冷啟動溫度時,無PWM調制波[1,6]輸出,制冷模塊處于閑置狀態(tài);當采集的實時溫度大于制冷啟動溫度但小于強制冷溫度時,輸出一定占空比的PWM調制波,制冷模塊啟動小功率的制冷方式;當采集的實時溫度大于強制冷溫度時,輸出一定占空比的PWM調制波,制冷模塊啟動大功率的制冷方式。
[$page] 4硬件電路設計及其元件選擇
該系統(tǒng)主要由溫度設定、溫度采集、PWM控制電路及輔助電路(復位電路和顯示電路)組成。本方案采用低價位、高性能的AT89C51作為主控芯片,實現整個系統(tǒng)的邏輯控制功能;采用單線通信的高精度溫度傳感器DS18B20,實現對被控對象LED芯片實時溫度的采集;同時設計了4×3輸入鍵盤,制冷啟動溫度和強制冷溫度由鍵盤輸入;設計了PWM控制電路,實現對半導體制冷片TEC[5]的工作電壓的控制,進而實現對半導體制冷片TEC制冷功率的控制,以達到對LED芯片及時散熱的效果。
4.1主控芯片AT89C51
該系統(tǒng)的主控芯片選用的是單片機AT89C51。單片機AT89C51是美國ATMEL公司生產的低電壓、高性能的處理器,為嵌入式控制系統(tǒng)提供了一種靈活性高的廉價方案。單片機AT89C51內含4KB的Flash儲存器,可反復擦寫1000次、128字節(jié)的RAM、四個并行8位雙向I/O和2