睿智先锋 力拨千斤

NG125 系列高分断小型断路器

产品目录

2008

目录

尺寸......24

随着中国经济的高速发展,用电环境日渐复杂,对供电质量的要求也日益提高;工业、 商用建筑领域及高端民用住宅领域对大量使用的低压断路器也提出了更高的要求。体积 更加紧凑,额定电流等级更高,短路电流分断能力更强,使用和安装更为简便安全,具 备更多认证的低压断路器产品将在更广泛的地区和行业里得到应用。

数十年来,施耐德电气一直致力于技术创新,满足中国市场的要求,2007年隆重推出基于全新技术平台的NG125系列高分断小型断路器。NG125系列具备了高分断能力和高额定电流,以及模块化小体积的特点,安装和操作简易安全,技术平台更具延展性,并在环保及专业标准认证上具有极大的前瞻性,产品配置齐全,有全系列的剩余电流动作保护附件,电气附件和机械附件。

NG125系列包括NG125H (36 kA) 和NG125L (50 kA) 两种分断能力的断路器及其配置 附件。可以用于大功率配电柜的出线侧直接保护负载,或作为分配电柜的主进线开关。

NG125 系列符合 IEC60947-2 / GB 14048.2 标准,并拥有 CCC, IEC, CE 和 EN 等多标准认证,可广泛用于工业、商用和民用建筑领域,并满足设备配套出口的需求。同时, NG125 系列拥有多国船级社认证,在海事领域应用广泛。

睿智先锋 力拨千斤

功能强大, 体积紧凑

NG125 系列高分断小型断路器基于全新技术平台,使强大功能与紧凑体积融为一体

- ■单极宽度为27mm,体积小于其它同等分断能力的断路器
- 在额定电压下,最高分断能力高达 50 kA

系列完整, 技术先进

NG125 系列高分断小型断路器产品齐全,系列完整,可提供多种解决方案

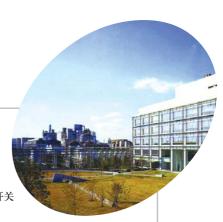
- 断路器分断能力: 36 kA, 50 kA
- 电流等级: 10 A~80A
- ■脱扣曲线: C, D
- 极数: 1P~4P
- ■附件: 剩余电流动作保护附件, 电气附件, 机械附件

安装灵活,应用广泛

NG125 系列高分断小型断路器安装十分灵活方便,可以适用于多种应用场合

- ■可直接导轨安装,也可平面安装
- 有延展手柄等机械附件,可安装在抽屉柜中

概述



典型应用场所

NG125 系列可以应用在各种场合,如:

工业、商业场所及高端民用建筑

- ■高分断的 NG125 系列可用于靠近电源侧,作为 一级配电的出线开关或直接带负载,如小区配电 房的照明电路配电箱
- NG125 系列具有较高的额定电流等级,并可以 简单地导轨安装,可以用作二级或三级配电柜的进线开关

特殊行业应用: OEM 客户、船舶、海事等 ■NG125系列基有CCC JEC CE和EN

- NG125 系列具有 CCC, IEC, CE 和 EN 等多标准 认证,可满足 OEM 客户产品配套出口需求
- NG125 系列具有多国船级社认证,可满足海事及 船舶需求
- □具备挪威 DNV 认证
- □具备法国 BV 认证
- □具备德国 GL 认证
- □具备英国 LRS 认证
- □具备俄罗斯 RMRS 认证

- NG125 系列体积紧凑,有助于使用更小体积的配电箱 以节省空间
- NG125系列的紧凑体积使得相同体积的配电箱里可以 容纳更多的电气元器件,将有效降低客户的成本投入

介绍

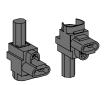
产品一览表

断路器	产品名称	NG125H	NG125L	
则唯新	符合标准	IEC 60947-2/GB 14048.2	IEC 60947-2/GB 14048.2	
	13 H 54-4hr			
		0 01	8 101	
		Benefit F		

最大工作电压	500V AC	500V AC
额定绝缘电压	690V	690V
额定电流	10 ,16 ,20 ,25 ,32 ,40 ,50 ,63 ,80A	10 ,16 ,20 ,25 ,32 ,40 ,50 ,63 ,80A
分断能力	36 kA	50 kA
隔离功能	有	有
极数	1P, 2P, 3P, 4P	1P, 2P, 3P, 4P
脱扣特性	C, D	C, D
电气寿命	10000次	10000次
接线能力	≤ 63A, 1.5 ~50mm ²	≤ 63A, 1.5 ~50mm ²
	80A, 16 ~70mm ²	$80A, 16 \sim 70 mm^2$

剩余电流动作保护附件

产品名称	Vigi NG125 电磁式剩余电流动作保护附件
ケム 上北	IEC 60047 2/CP 14049 2



工作电压范围	230 ~415V AC
额定绝缘电压	690V
额定电流	≤ 63A
额定剩余动作电流	30 mA, 300 mA - 瞬动型 <u></u>
	300 mA ⑤ - 延时型 ⊠
	3003000 mA I/S/D - 可整定型 ⊠
极数	2P, 3P, 4P
接线能力	1.5 ~50mm ²

机械附件 产品名称 延展手柄 挂锁附件 绝缘分线终端

功能	■与 NG125 系列 3P,4P	■可以将 NG125 系列断路	■可以合并3股电缆
	断路器配合使用	器锁定在 I/O 位	■适用于各额定电流等级的
	■安装在配电柜门上	■ 挂锁直径 58 mm	断路器
	■使用延展手柄可以在	(用户自购)	□ 软线: 1 ~10mm²
	配电柜外操作 NG125		□硬线: 1.5 ~16mm²
	系列断路器		■相间绝缘电压 Ui:
			1000 V

介绍

产品一览表

电气附件	产品名称	OF+OF	OF+SD	MX+OF
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	功能	■辅助接点		■分励脱扣
				■当得到信号后,触发与
				之拼装的断路器脱扣
	沙口 切集。	MN	CDV	MXV
	产品名称	IVIIN	SDV	MXV
			SDV	MANY TO SEE THOSE
	功能	■欠压脱扣	■剩余电流动作保护故障报	■剩余电流动作保护分励
		■电源电压下降到额定电	警接点	脱扣
		压Un的70%~35%时,	■和 I/S/D 剩余电流动作保	■当得到信号后,使剩余
		触发与之拼装的断路器	护附件配合使用	电流动作保护模块脱扣
		脱扣		■脉冲耐受: 6 kV
		■当供电电压没有恢复时,		■和 I/S/D 剩余电流动作
		严禁重新闭合		保护附件配合使用

NG125 系列高分断小型断路器产品号说明

NG125	Н –	С	10A / 2	P +	VG	- 300mA +	MN
产品名称	分断能力 H: 36 kA L: 50 kA	脱扣曲线 C: C型曲线 D: D型曲线	10A 16A 20A	极数 1P 2P 3P 4P	配电磁式 剩余电流 动作保护 附件	额定剩余电流 30mA 300mA 300mA⑤ I/S/D (3003000)	配电气附件 OF+OF OF+SD MX+OF MN SDV MXV

说明:

- 1、NG125 断路器具有隔离功能。
- 2、NG125 断路器具有最高限流等级 (3级)。
- 3、电气附件拼装在断路器左侧,且总的拼装宽度最大为36 mm。
- 4、NG125 剩余电流动作保护附件只能与额定电流 ≤ 63 A 的 NG125 断路器配合使用。

举例:产品号 NG125 L - C 20 A / 2 P VG 300 mA MN

表示: NG125 50 kA 断路器 C 型曲线 额定电流 20 A 2 极 配 300 mA 剩余电流动作保护附件 配 MN 欠压脱扣附件。

NG125H 断路器

C型和D型脱扣曲线 IEC 60947-2 / GB 14048.2:36kA

功能

NG125H断路器的分断能力高达36 kA, 用于高分断场合线路和负载的保护和控制。如:

- 分配电柜的主进线
- 大功率配电柜出线侧直接保护负载
- 大功率配电柜出线开关
- 其它大短路电流的场合
- 隔离保护

说明

技术参数

- ■额定电流: 10~80 A (40°C 时)
- ■冲击耐受电压 Uimp: 8 kV
- ■额定绝缘电压 Ui: 690 V
- ■最大工作电压: 500 V AC
- ■分断能力: (IEC 60947-2 标准)

级数	电压 (V AC)	分断能力(kA)
1P	220~240	36
1P	380~415	9 (1)
2, 3, 4P	380~415	36

(1) IT 接地系统中发生二次故障时单极的分断能力

- ■触头实际位置指示
- ■手柄3个固定位置:正常打开-故障脱扣-闭合
- 3P和4P有自带的锁扣功能
- ■故障脱扣的指示:
- □透明指示窗口故障时显现为红色
- □手柄位置:中间位置为故障脱扣
- ■可以使用测试按钮来检测脱扣机械机构是否能够正常动作
- ■快速闭合
- ■电气寿命: 10,000次
- ■抗湿热性 (IEC 68.1 标准): 2类 (温度 55°C 时,相对湿度 95%)
- ■重量(g)

类型	1P	2P	3P	4P	
	240	480	720	960	

- ■防护等级: IP20B (露出箱体的部分适用于 IP40D)
- ■接线:
- □≤63A 电流等级: 1.5~50mm², 隧道式接线端子
- □80A 电流等级: 16~70mm², 隧道式接线端子
- □3P, 4P 断路器可以使用梳状母排或接线片(需要另行订购)连接
- □可以使用 6.35mm 快速连接片从断路器每极前端插片处引出辅助回路所需电力
- ■C型脱扣曲线:
- □磁脱扣单元动作在8ln ± 20% 范围动作
- ■D型脱扣曲线:
- □磁脱扣单元动作在 12ln ± 20% 范围动作

NG125H 断路器

C型和D型脱扣曲线 IEC 60947-2 / GB 14048.2: 36kA

类型	额定电流	樂座	产品	旦
天 笙	 (A)	宽度 (9mm 的倍数)	C型	5 D型
1P	10	3	18705	19350
ir .	16	3	18706	19351
	20	3	18707	19352
<u>*</u>	25	3	18708	19353
_	32	3	18709	19354
5	40	3	18710	19355
5	50	3	18711	19356
	63	3	18712	19357
2	80	3	18713	19358
2P	10	6	18714	19359
	16	6	18715	19360
1 3 * *	20	6	18716	19361
1 3 * *	25	6	18717	19362
<i>f-1</i>	32	6	18718	19363
55	40	6	18719	19364
7 7	50	6	18720	19365
1 1 2 4	63	6	18721	19366
	80	6	18722	19367
3P	10	9	18723	19368
	16	9	18724	19369
1 3 5	20	9	18725	19370
* * *	25	9	18726	19371
F-F-7	32	9	18727	19372
222	40	9	18728	19373
)))	50	9	18729	19374
	63	9	18730	19375
2 4 6	80	9	18731	19376
4P	10	12	18732	19377
	16	12	18733	19378
1 3 5 7 * * * *	20	12	18734	19379
//-/ _T /	25	12	18735	19380
7777	32	12	18736	19381
5555	40	12	18737	19382
	50	12	18738	19383
2 4 6 8	63	12	18739	19384

NG125L 断路器

C型和D型脱扣曲线 IEC 60947-2 / GB 14048.2: 50kA

功能

NG125L断路器的分断能力高达50 kA, 用于高分断场合线路和负载的保护和控制。如:

- 分配电柜的主进线
- 大功率配电柜出线侧直接保护负载
- 大功率配电柜出线开关
- 其它大短路电流的场合
- 隔离保护

说明

技术参数

- ■额定电流: 10~80 A (40°C时)
- ■冲击耐受电压 Uimp: 8 kV
- ■额定绝缘电压 Ui: 690 V
- ■最大工作电压: 500 V AC
- ■分断能力: (IEC 60947-2 标准)

级数	电压 (V AC)	分断能力 (kA)
1P	220~240	50
1P	380~415	12.5 (1)
2, 3, 4P	380~415	50

(1) IT 接地系统中发生二次故障时单极的分断能力

- 触头实际位置指示
- ■手柄3个固定位置:正常打开-故障脱扣-闭合
- 3P和4P有自带的锁扣功能
- ■故障脱扣的指示:
- □透明指示窗口故障时显现为红色
- □手柄位置:中间位置为故障脱扣
- ■可以使用测试按钮来检测脱扣机械机构是否能够正常动作
- ■快速闭合
- ■电气寿命: 10,000次
- ■抗湿热性 (IEC 68.1): 2 类 (温度 55°C 时,相对湿度 95%)
- ■重量 (g)

类型	1P	2P	3P	4P	
	240	480	720	960	

- ■防护等级: IP20B (露出箱体的部分适用于 IP40D)
- ■接线:
- □ ≤ 63 A 电流等级: 1.5~50 mm², 隧道式接线端子
- □80 A 电流等级: 16~70 mm², 隧道式接线端子
- □可以使用梳状母排或接线片(需要另行订购)连接
- □可以使用 6.35mm 快速连接片从断路器每极前端插片处引出辅助回路所需电力
- C 型脱扣曲线:
- □磁脱扣单元动作整定在8 ln ± 20%
- D 型脱扣曲线:
- □磁脱扣单元动作整定在 12 ln ± 20%

NG125L 断路器

C型和D型脱扣曲线 IEC 60947-2 / GB 14048.2: 50kA

18784

18793

18806

18817

类型	额定电流	宽度	产品	号
74.1.	(A)	(9mm 的倍数)	C型	D型
1P	10	3	18777	18830
	16	3	18778	18831
1 . *	20	3	18779	18832
\ ^X	25	3	18780	18833
ኒ	32	3	18781	18834
5	40	3	18782	18835
ſ	50	3	18783	18836
2	63	3	18784	18837
	80	3	18785	18838
2P	10	6	18788	18839
	16	6	18789	18840
1 3 . * . *	20	6	18790	18841
<u>,* ,*</u>	25	6	18791	18842
<i>F- F</i>	32	6	18792	18843
-	40	6	18793	18844
7 7	50	6	18794	18845
2 4	63	6	18795	18846
	80	6	18796	18847
3P	10	9	18799	18848
	16	9	18800	18849
1 3 5 * * *	20	9	18801	18850
/// T T T	25	9	18802	18851
777	32	9	18803	18852
555	40	9	18804	18853
	50	9	18805	18854
2 4 6	63	9	18806	18855
	80	9	18807	18856
4P	10	12	18810	18857
	16	12	18811	18858
1 3 5 7 * * * *	20	12	18812	18859
* * * *	25	12	18813	18860
7777	32	12	18814	18861
5555	40	12	18815	18862
7777	50	12	18816	18863
2 4 6 8	63	12	18817	18864
	80	12	18818	18865

Vigi NG125 电磁式剩余电流保护附件

IEC 60947-2 / GB 14048.2 30, 300 mA 瞬动型 AC类 300 mAS 延时型 A类 300...3000 mA 可整定型 A类

功能

Vigi NG125 与 NG125 拼装使用,可实现:

- 对间接接触提供人身保护
- 对直接接触提供补充人身保护
- 对电气设备的绝缘故障提供保护 (电气火灾等)
- 300 ⑤ 可实现分级保护
- 300...3000 mA (300, 500, 1000, 3000 mA) 为可整定型剩余电流动作保护附件,它可以实现更为灵活和宽广的选择性保护,并可以实现剩余电流动作保护附件一定范围内的报警不跳闸的功能

说明

AC 类

对突然施加或缓慢上升的剩余正弦交流电流,AC 类剩余电流动作保护模块能确保脱扣

A类

对突然施加或缓慢上升的剩余正弦交流电流和剩余脉动直流电流,A类剩余电流动作保护模块都能确保脱扣

S和D

图 和 D 剩余电流动作保护模块在如下情况下实现上下级的全选择性:

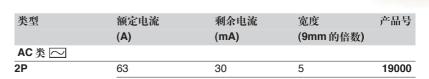
- ■下级剩余电流动作保护模块是瞬动型并且其动作额定值小于上级剩余电流动作保护模块的 $I \triangle n/2$
- ■上级剩余电流动作保护模块不动作时间≥ 1.2 倍的下级剩余电流动作保护模块响应时间

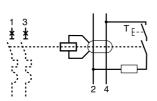
技术参数

- 由带防护的硬导线连接到断路器 (防护等级: IP40)
- 通过 Vigi 模块正面的 Reset 手柄指示接地故障的发生
- ■电压范围: 230~415V AC
- 频率: 50/60 HZ
- 最大耐受电压 Uimp: 8 kV
- 额定绝缘电压 Ui: 690 V
- 8/20 µs 脉冲耐受
- □⑤和可调型: 5 kÂ
- 口瞬动型:3kÂ
- 额定电流: 63 A 适用于额定电流小于 (等于) 63A 的断路器
- ■重量

类型	2P	3P	4P
5 mod	250		
9 mod		410	450
11 mod		750	800

■接线

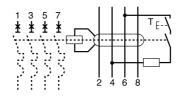

- □1.5~50 mm², 隧道式接线端子
- □也可使用接片附件(需另行订购)连接

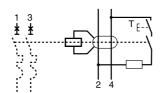

可调型剩余电流动作保护模块的特殊技术参数

- 额定剩余动作电流可调: 300, 500, 1000, 3000 mA
- ■脱扣时间可调
- □瞬时
- □短延时: 60 ms
- □长延时: 150 ms
- 3P, 4P 可调型剩余电流动作保护模块的剩余电流指示
- □在前面板指示灯亮起
- □ 远程指示:剩余电流动作保护模块可以提供一个 250 V-1A 常开接点,以 2x1.5 mm² 终端接片连接
- □报警阈值: I△n的10%~50%
- ■在做绝缘测试时必需断电
- Vigi I/S/D 可以选用以下的电气附件
- □剩余电流动作保护分励脱扣: MXV
- □剩余电流动作保护故障报警接点: SDV

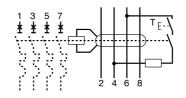
Vigi NG125 电磁式剩余电流保护附件

IEC 60947-2 / GB 14048.2 30, 300 mA 瞬动型 AC类 300 mA⑤ 延时型 A类 300...3000 mA 可整定型 A类




3P 63 30 9 1900	63		63	63 30	9 1	9002
-------------------------------	----	--	----	-------	-----	------

4P	63	30	9	19004
----	----	----	---	-------


2P	63	300	5	19001

3P	63	300	9	19003
----	----	-----	---	-------

4P	63	300	9	19005
----	----	-----	---	-------

19002

19004

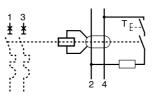
19003

19005

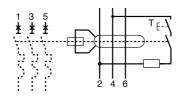
Vigi NG125 电磁式剩余电流保护附件

IEC 60947-2 / GB 14048.2 30, 300 mA 瞬动型 AC类 300 mA⑤ 延时型 A类 300...3000 mA 可整定型 A类

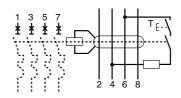
19030



19036



19037



3P	63	300 🗟	9	19032
	63	3003000I/S/D	11	19036

4P	63	300 🗟	9	19034
	63	3003000I/S/D	11	19037

电气附件

功能

MX+OF, MXV

在得到信号后, MX+OF可以触发与之拼装的断路器脱扣, MXV 可以触发与之拼装的剩余电流动作保护模块脱扣

OF+SD, OF+OF, SDV

远程指示:

- 短路器的"断开"或"闭合"位置 (OF)
- 断路器故障报警 (SD)
- 剩余电流动作保护模块故障报警 (SDV)

MN

控制断路器的欠压脱扣

剩余电流动作保护模块的预报警功能(只适用于 I/S/D 剩 余电流动作保护模块):

- 由剩余电流动作保护模块上的指示灯和干接点实现剩 余电流动作保护预警功能
- 该功能可以指示剩余电流的产生,使用户可以在断路器脱扣前采取应对措施
- ■剩余电流动作保护报警阈值可在剩余电流动作保护模 块面板上调整

说明

技术参数

- ■符合标准:
- □ IEC60947-5-1/GB14048.5 (MX+OF, OF+SD, OF+OF及 SDV)
- □ IEC60947-2/GB14048.2 (MN 及 MXV)
- 电气寿命: 10,000 次 (AC 15)
- □额定绝缘电压 Ui: 2级绝缘 □, 690 V
- □冲击耐受电压 Uimp: 8 kV
- □污染等级:3

■连接:

平头接线端:

- □1或2根2.5 mm²软导线或硬导线
- □2×2.5 mm²非绝缘导线端子
- □2×1.5 mm²绝缘导线端子
- □2 × 1.5 mm² 叉型接线片

附件 2 OF+OF

2 OF+SD

MN MX+OF 断路器 NG125 剩余电流动作保护模块

断路器电气附件技术参数

OF+OF

■辅助接点

OF+SD

■故障报警指示、报警接点

MX+OF 分励脱扣单元

- ■分励脱扣
- ■当得到信号后,触发与之拼装的断路器脱扣

MN

- ■欠压脱扣
- ■电源电压下降到额定电压 Un 的 70%~35% 时, 使断路器脱扣。
- ■当供电电压没有恢复时,严禁重新闭合。 (例如:通过按钮紧急切断电路时)

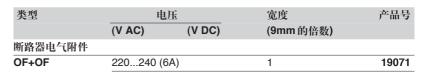
剩余电流动作保护模块电气附件技术参数

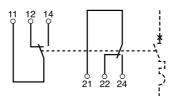
- 只和 I/S/D Vigi 剩余电流动作保护模块配合使用 SDV
- ■剩余电流动作保护故障报警接点

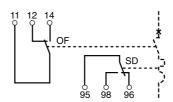
MXV

- ■剩余电流动作保护分励脱扣
- 当得到信号后,使剩余电流动作保护模块脱扣
- ■脉冲耐受: 6 kV

电气附件



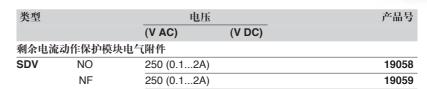


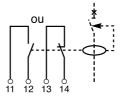


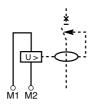
OF+SD	220240 (6A)	1	19072

MX+OF	230415	110130	2	19064
	48130	48	2	19065
	24	24	2	19066

MN 230240	2	19067
-----------	---	-------


电气附件





MXV	110240	110	19060

机械附件

功能

NG125的机械附件可以很方便地与 NG125 断路器配合使用

说明

延展手柄

- ■与NG125 3P, 4P断路器配合使用
- ■安装在配电柜门上
- ■使用延展手柄可以在配电柜外操作 NG125 断路器
- ■延展手柄在○位则断路器处于断开位置,并且可以使用挂锁
- ■防护等级 IP55
- ■延展手柄的3个状态: 开、关、脱扣
- ■配电柜门是从内部锁定的,只有当手柄处于〇位才可以打开柜门

挂锁附件

- ■可以将 NG125 断路器锁定在 I 或 O 位
- ■挂锁直径 5...8 mm (用户自购)

绝缘分线终端

- ■可以合并3股电缆
- ■可以和各额定电流等级的断路器配合使用

□软线: 1~10 mm²

- □硬线: 1.5~16 mm²
- ■相间绝缘电压 Ui: 1000 V

19088

19090

19091

类型		说明	产品号
延展手柄			
	标准型	黑色	19088
	安全型	红色手柄, 黄色底座	19089

挂锁附件 一组 4 个 **19090**

绝缘分线终端一组 4 个19091一组 3 个19096

限流

限流技术是由 Merlin Gerin 提出并于 1930 年首先用于直流系统, 1954 年引入交流系统。 限流技术的核心是当短路发生时,依靠限流型 保护装置的快速分断从而使实际故障电流大大 低于预期短路电流。

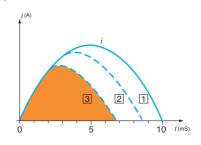
■ 限流原理

小型断路器的保护功能是防止电导体和电气设备不受热应力和动应力的破坏。根据焦耳定律,通过断路器的能量积分公式为

$$E = \int_{t_0}^{t_1} i^2 dt$$

由公式可以看出通过断路器的能量依赖于其通过的电流和时间,断路器分断时间越快,通过

断路器的能量越小,同时断路器的动作时间越 快也就意味着分断的电流越小,能量会进一步 降低。


为什么断路器的分断速度越快,其分断的电流 就越小呢?

我们知道,断路器在正常工作时其额定电流较小,而短路时短路点预期的最大短路电流有效值达数千安或十几千安,但实际上发生短路时短路电流总是由正常工作电流连续上升至短路电流值,此过程总需要一定的时间,而小型断路器动作速度快,会在电流上升到最大值之前将断路器断开。因此,断路器反应的速度越快其分断的电流就越小,通过断路器的能量就越低,限流能力也就越好。

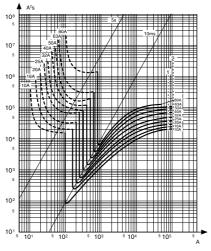
■ 限流等级

□一级限流: *I*²t 允许为一个正弦整半波能量□二级限流: *I*²t 允许为一个正弦整半波能量

□ 三级限流: I^2 t 允许为一个正弦整半波能量的 1/10

NG125 H/L 断路器

热应力曲线图 NG125 H/L C 曲线 240/415V


■ Ue

☐ IP 240V

□ 2, 3, 4P 415V

1. NG125 H

2. NG125 L

C型曲线, 热应力曲线图

NG125 H / L 断路器

限流曲线图 NG125 H/L

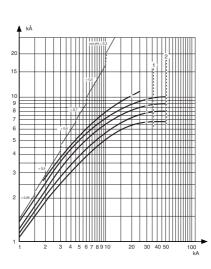
240/415V ■ Ue

☐ IP 240V

□ 2, 3, 4P 415V

1. NG125H

2. NG125L

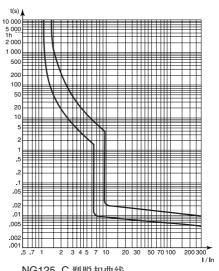

3. 10-16A

4. 20-25A

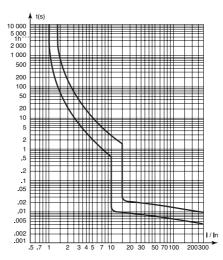
5. 32-40A

6. 50-63A

7. 80A


脱扣曲线

NG125 系列断路器


C和D型脱扣曲线,符合IEC60947-2标准,其 瞬时脱扣动作范围如下:

C型曲线: 8ln ± 20%

D型曲线: 12ln ± 20%

NG125 C型脱扣曲线

NG125 D型脱扣曲线

级联与选择性

说明

级联技术是断路器限流特性的具体应用,其主要原理是利用上级断路器的限流作用,在选择下级断路器时,可选择较低分断能力的断路器,以节约费用。

上级的限流型断路器应能分断其安装处的最大预期短路 电流,由于系统中上下级断路器为串联安装,当下级断 路器出口处发生短路时,该短路电流由于上级断路器的 限流作用而使其实际值远小于该点的预期短路电流,也 就是说,下级断路器的分断能力在上级断路器帮助下大 大增强,超过了其额定分断能力。

级联数据只能由实验测出,上下级断路器的配合选择 也只能由断路器制造商认定。 选择性又称保护的选择性,是指自动保护装置之间的协调配合,使电网任意点的故障可以直接由故障处上一级的断路器消除。

■ 完全选择性

故障点的所有故障电流值,从过载到金属性短路电流, 均由故障点最近的上一级断路器打开

■部分选择性

如果全短路故障电流情况下,不能满足全选择性,但是可能在某一较低故障值时(选择性极限值)以下具有选择性,则称为部分选择性

■无选择性

当故障发生时, 无法实现选择性, 可能出现越级跳闸或同时动作

230 / 400 V 系统级联配合表

上级: C65/NC100/NG125 下级: C65/NC100/NG125

上级断路器		C65N	C65H	NC100H	C65L	NC100LS	NG125H	NG125L
分断能力 kA rms		6	10	10	15	36	36	50
下级断路器		级联增强的分	附能力 (kA	rms)		•		
C65N	6		10	10	15	36	36	50
C65H	10				15	36	36	50
C65L	15					36	36	50
NC100H	10					36		50
NG125H	36							50
NG125L	50							

上级: Compact NS 下级: Multi 9

上级断路器		NS100N	NS100H	NS100L	NS160N	NS160H	NS160L	NS250N	NS250H	NS250L
分断能力 kA rms		25	70	150	36	70	150	36	70	150
下级断路器		级联增强的分	〉断能力 (kA	rms)			•			
C65N 1A~4A		15	20	20						
6A,10A		15	20	20	30	30	30			
18A,20A	6	15	20	20	15	15	15	15	15	15
25A,32A		15	20	20	10	10	10	10	10	10
$40A\!\sim\!63A$		15	20	20	15	20	20	15	20	20
C65H/L1A~4A		25	30	30						
6A,10A	10/15	25	30	30	30	30	30			
16A~63A		25	30	30	25	35	35	25	30	30
NC100H	10		30	30	25	30	30	25	30	30
NG125H	36		50	100		50	100		50	100
NG125L	50		70	150		70	150		70	150

无级联

级联与选择性

选择性配合表

下级 上级	-	NG125 H,L	C曲线							
	見流In(A)	10	16	20	25	32	40	50	63	80
选择性故障电流极限		80	128	160	200	256	320	400	504	640
C65N,H,L										
C曲线	1 2 3									
	3									
	4									
	6									
	10									
	16									
	20									
	25									
	32									
	40									
	50									
	63									
选择性故障电流极限		80	128	160	200	256	320	400	504	640
C65N,H	1									
D曲线	2									
	3									
	4									
	6									
	10									
	16									
	20									
	25									
	32									
	40									
	50									
	63									

级联与选择性

选择性配合表

→	NG125 L D	曲线							
L流 In(A)	10	16	20	25	32	40	50	63	80
(A)	120	192	240	300	384	480	600	756	960
1									
2									
3									
4									
6									
10									
16									
20									
25									
32									
40									
50									
63									
(A)	120	192	240	300	384	480	600	756	960
1									
2									
3									
4									
6									
10									
16									
20									
25									
32									
40									
50									
50									
	2 3 4 6 10 16 20 25 32 40 50 63 (A) 1 2 3 4 6 10 16 20 25 32 40 50 63 (A) 1 2 3 4 4 6 10 16 16 10 16 16 16 16 16 16 16 16 16 16	日流 In(A) 10 (A) 120 1 2 3 4 6 10 16 20 25 32 40 50 63 (A) 120 1 2 3 4 6 10 16 20 2 5 3 2 4 6 6 10 16 20 2 5 3 2 4 6 6 10 16 20 25 3 2 40 25 32 40 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	日流 In(A) 10 16 (A) 120 192 1 2 3 4 6 10 16 20 25 32 40 50 63 (A) 120 192 1 2 3 4 6 10 192 1 6 10 16 20 192 1 1 2 1 1 2 192 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	日流 In(A) 10 16 20 (A) 120 192 240 1 2 3 4 6 10 120 192 240 1 2 2 3 4 6 10 1 20 192 240 1 2 2 40 1 2 2 40 1 2 2 40 1 2 2 40 1 2 2 3 3 4 6 6 10 16 20 25 3 3 4 6 6 10 16 20 25 3 2 40 16 20 25 3 2 40 16 20 25 3 2 40 16 20 25 3 2 40 16 20 25 3 2 40 17 18 18 18 18 18 18 18 18 18 18 18 18 18	上流 In(A) 10 16 20 25 (A) 120 192 240 300 1 2 3 4 6	議論 In(A) 10 16 20 25 32 (A) 120 192 240 300 384 1 2 3 4 6 6 10 16 20 25 32 10 10 16 16 20 25 32 10 10 16 16 10 10 16 10 10 10 10 10 10 10 10 10 10 10 10 10	#於 In(A) 10 16 20 25 32 40 (A) 120 192 240 300 384 480 1 2 3 3 4 4 6 6 10 120 192 240 300 384 480 1 2 3 3 4 4 6 6 10 120 192 240 300 384 480 1 2 3 3 4 4 6 6 10 10 16 2 0 192 240 300 384 480 1 2 3 3 4 4 6 6 10 10 16 2 0 192 240 300 384 480 1 2 3 3 4 6 6 10 16 20 25 3 2 40 300 384 480 1 2 2 3 3 4 6 6 10 16 20 25 3 2 40 40 40 40 40 40 40 40 40 40 40 40 40	18 kin(A) 10 16 20 25 32 40 50 (A) 120 192 240 300 384 480 600 1 2 3 4 4 4 4 4 6 10 16 20 25 32 4 20 25 32 40	18% in(A) 10 16 20 25 32 40 50 63 1 (A) 120 192 240 300 384 480 600 756 1 2 3 4 6 6 6 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7

级联与选择性

选择性配合表

下级	上级 →	NS10	00H/L							NS160	N/H/L			NS250		
\	额定电流	脱扣	单元 TM-I	D						脱扣单	元 TM-I	ס		脱扣单	元 TM-I	כ
•	In(A)	16	25	32	40	50	63	80	100	80	100	125	160	160	200	250
NG125H	≤ 20			0.4	0.5	0.5	0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
C曲线	25, 32						0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	40							0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	50							0.63	0.8	2.5	2.5	2.5	2.5	Т	Т	Т
	63								0.8		2.5	2.5	2.5	Т	Т	Т
	80												2.5	Т	Т	Т
NG125H	≤ 20			0.4	0.5	0.5	0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
D曲线	25, 32						0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	40							0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	50								0.8	2.5	2.5	2.5	2.5	Т	Т	Т
	63										2.5	2.5	2.5	Т	Т	Т
	80												2.5	Т	Т	Т
NG125L	≤ 16		0.3	0.4	0.5	0.5	0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
C曲线	20			0.4	0.5	0.5	0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	25, 32						0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	40							0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	50							0.63	0.8	2.5	2.5	2.5	2.5	Т	Т	Т
	63								0.8		2.5	2.5	2.5	Т	Т	Т
	80												2.5	Т	Т	Т
NG125L	≤ 16		0.3	0.4	0.5	0.5	0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
D曲线	20			0.4	0.5	0.5	0.5	0.63	8.0	Т	Т	Т	Т	Т	Т	Т
	25, 32						0.5	0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	40							0.63	0.8	Т	Т	Т	Т	Т	Т	Т
	50								0.8	2.5	2.5	2.5	2.5	Т	Т	Т
	63										2.5	2.5	2.5	Т	Т	Т
	80												2.5	Т	Т	Т

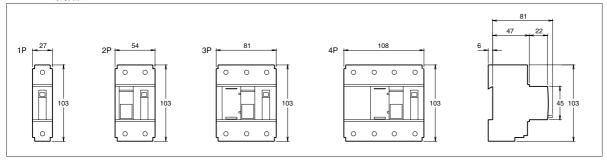
注:表中"T"表示上下级间具有全选择性;数值表示上下级选择性故障电流极限值,即短路电流小于该值具有选择性。

温度修正系数表 直流应用

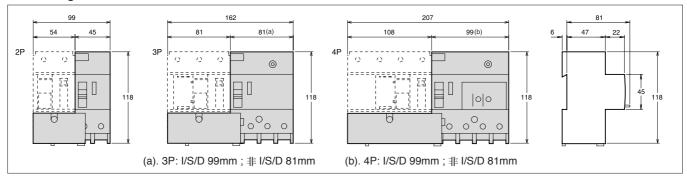
温度修正系数表

断路器最大允许电流与断路器的环境温度有关。

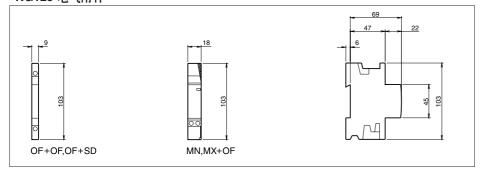
环境温度是指断路器安装的配电箱或开关柜中的温度,各种断路器的参考温度见表格中的彩色行的数值。

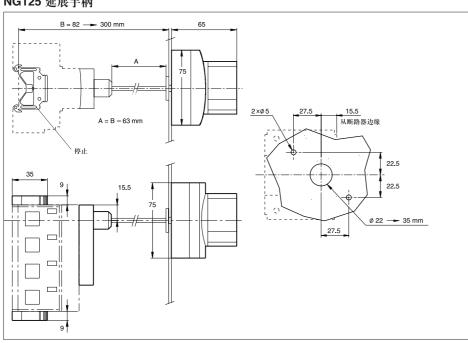

NG125

温度 (°C)	20	25	30	35	40	45	50	55	60
额定值									
电流 (A)									
10	11	10.75	10.5	10.25	10	9.75	9.5	9.25	9
16	17.6	17.2	16.8	16.4	16	15.6	15.2	14.8	14.4
20	22	21.5	21	20.5	20	19.5	19	18.5	18
25	27.5	26.87	26.25	25.62	25	24.37	23.75	23.12	22.5
32	35.2	34.4	33.6	32.8	32	31.2	30.4	29.6	28.8
40	44	43	42	41	40	39	38	37	36
50	55	53.75	52.5	51.25	50	48.75	47.5	46.25	45
63	69.3	67.72	66.15	64.57	63	61.42	59.85	58.27	56.7
80	88	86	84	82	80	78	76	74	72


直流应用

类型				NG125	БН	NG125L		
额定冲击耐受电	且压 Uim	p (kV))	8		8		
额定绝缘电压U	Ji (V)			690		690		
最大工作电压U	Je (V)			500		500		
极数				1	2,3,4	1	2,3,4	
分断能力	lcu	AC	110130 V	70	_	100	_	
(kA)			220240 V	36	70	50	100	
IEC 60947-2			380415 V	9	36	12.5	50	
			440 V		30	_	40	
			500 V	6	10	6	12	
		DC	60 V	36	_	50	_	
			125 V/ 极	36	_	50	_	
			250 V	_	36 (2P)	_	50 (2P)	
			500 V	_	36 (4P)	_	50 (4P)	
	lcs	AC		75% lc	u	75% lcu		
		DC		100%	lcu	100% lcu	I	
脱扣曲线	С		40°C	1080		1080		
/电流(A)	D		40°C	_		1080		
快速闭合								
分断指示								
电气辅件								


NG125 断路器


NG125 +Vigi NG125

NG125 电气附件

NG125 延展手柄

施耐德电气(中国)投资有限公司

- 8				
施耐德电气(中国)投资有限公司	北京市朝阳区将台路2号和乔丽晶中心施耐德电气大厦	邮编: 100016	电话: (010) 84346699	传真: (010) 84501130
■ 上海分公司	上海市漕河泾开发区宜山路1009号创新大厦第12层,15层,16层	邮编: 200233	电话: (021) 24012500	传真: (021) 64957301
■ 张江办事处	上海市浦东新区龙东大道3000号8号楼5楼	邮编: 201203	电话: (021) 38954699	传真: (021) 58963962
■ 广州分公司	广州市珠江新城临江大道3号发展中心大厦25层	邮编: 510623	电话: (020) 85185188	传真: (020) 85185195
■ 武汉分公司	武汉市汉口建设大道568号新世界国贸大厦I座37层01、02、03、05单元	邮编: 430022	电话: (027) 68850668	传真: (027) 68850488
■ 成都分公司	成都市高新技术开发区高棚东路11号	邮编: 610041	电话: (028) 85178879	传真: (028) 85178717
■ 天津办事处	天津市河西区围堤道125号天信大厦22层2205-2207室	邮编: 300074	电话: (022) 28408408	传真: (022) 28408410
■ 济南办事处	济南市泺源大街229号金龙中心主楼21层D室	邮编: 250012	电话: (0531) 86121765	传真: (0531) 86121628
■青岛办事处	青岛香港中路59号国际金融中心35层3501B室	邮编:266071	电话: (0532) 85793001	传真: (0532) 85793002
■ 石家庄办事处	石家庄市中山东路303号世贸皇冠酒店办公楼12层1201室	邮编: 050011	电话: (0311) 86698713	传真: (0311) 86698723
■ 沈阳办事处	沈阳沈河区青年大街219号华新国际大厦16层G/H/I座	邮编: 110016	电话: (024) 23964339	传真: (024) 23964296/4297
■ 哈尔滨办事处	哈尔滨南岗区红军街15号奥威斯发展大厦22层A, B座	邮编: 150001	电话: (0451) 53009797	传真: (0451)53009639/9640
■ 长春办事处	长春解放大路 2677号长春光大银行大厦1211-12室	邮编: 130061	电话: (0431) 88400302/0303	传真: (0431) 88400301
■ 大连办事处	大连中山区同兴街25号大连世界贸易大厦45层01, 12B室	邮编: 116001	电话: (0411) 82530368	传真: (0411) 82531268
■ 西安办事处	西安高新区科技路48号创业广场B座17层1706室	邮编: 710075	电话: (029) 88332711	传真: (029) 88324697/4820
■ 太原办事处	太原市府西街268号力鸿大厦B区1003室	邮编: 030002	电话: (0351) 4937186	传真: (0351) 4937029
■ 乌鲁木齐办事处	乌鲁木齐市新华北路5号美丽华酒店A座2521室	邮编: 830002	电话:(0991) 2825888 ext. 2521	传真: (0991) 2848188
■ 南京办事处	南京市中山路268号汇杰广场2001-2003室	邮编: 210008	电话: (025) 83198399	传真: (025) 83198321
■ 苏州办事处	苏州市工业园区苏华路2号国际大厦1711-1712室	邮编: 215021	电话: (0512) 68622550	传真: (0512) 68622620
■ 无锡办事处	无锡市太湖广场永和路28号无锡工商综合大楼17层	邮编: 214021	电话: (0510) 81009780	传真: (0510)81009760
■ 南通办事处	江苏省南通市跃龙路48号百乐门大酒店4001室	邮编: 226000	电话: (0513) 85586789	传真: (0513) 85586785
■ 常州办事处	常州市局前街2号常州椿庭楼宾馆1216室	邮编: 213000	电话: (0519) 8130710	传真: (0519) 8130711
■ 合肥办事处	合肥市长江东路1104号古井假日酒店820房间	邮编: 230011	电话: (0551) 4291993	传真: (0551) 2206956
■ 杭州办事处	杭州市凤起路78号浙金广场四层	邮编: 310003	电话: (0571) 85271466	传真: (0571) 85271305
■ 南昌办事处	江西南昌市八一大道357号财富广场2701室	邮编: 330003	电话: (0791) 6272972	传真: (0791) 6295323
■ 福州办事处	福州市五一中路 88 号福州平安大厦 12 层 D 单元	邮编: 350005	电话: (0591) 87114853	传真: (0591) 87112046
■ 洛阳办事处	洛阳市涧西区凯旋西路88号华阳广场国际大饭店609室	邮编: 471003	电话: (0379) 65588678	传真: (0379) 65588679
■ 厦门办事处	厦门市思明区厦禾路189号银行中心2502-03A室	邮编: 361003	电话: (0592) 2386700	传真: (0592) 2386701
□ 宁波办事处	宁波市江东北路1号宁波中信国际大酒店833室	邮编: 315010	电话: (0574) 87706808	传真: (0574) 87717043
■ 温州办事处	温州市车站大道高联大厦写字楼9层B2号	邮编: 325000	电话: (0577) 86072225/6/7/9	传真: (0577) 86072228
成都办事处	成都市顺城大街308号冠城广场27楼 A-F 座	邮编: 610017	电话: (028) 86528282	传真: (028) 86528383
重庆办事处	重庆市渝中区邹容路68号重庆大都会商厦12楼1211-12室	邮编: 400010	电话: (023) 63839700	传真: (023) 63839707
佛山办事处	佛山市祖庙路33号百花广场26层2622-2623室	邮编: 528000	电话: (0757) 83990312/0029/1312	传真: (0757) 83991312
■ 昆明办事处	昆明市三市街6号柏联广场10楼07-08单元	邮编: 650021	电话: (0871) 3647549	传真: (0871) 3647552
■ 长沙办事处 	长沙市劳动西路215号湖南佳程酒店14层01, 10, 11室	邮编: 410011	电话: (0731) 5112588	传真: (0731) 5159730
■ 郑州办事处 ■ ★ルカまり	郑州市金水路115号中州皇冠假日酒店1号楼4层	邮编: 450003	电话: (0371) 65939211	传真: (0371) 65939213
中山办事处	中山市中山三路18号中银大厦18楼1813室	邮编: 528403	电话: (0760) 8235971	传真: (0760) 8235979
鞍山办事处	鞍山市铁东区南胜利路21号万科写字楼2009室	邮编: 114001	电话: (0412) 5575511/5522	传真: (0412) 5573311
■ 烟台办事处 ■ まつれ事が	烟台市南大街9号金都大厦2516室	邮编: 264001	电话: (0535) 3393899	传真: (0535) 3393998
■ 南宁办事处 ————————————————————————————————————	南宁市南湖区民族大道111号广西发展大厦12层	邮编: 530000	电话: (0771) 5519761/9762	传真: (0771) 5519760
■ 东莞办事处 ————————————————————————————————————	东莞市南城区体育路2号鸿禧中心B1003室	邮编: 523009	电话: (0769) 22413010	传真: (0769) 22413160
三 深圳办事处	深圳市罗湖区深南东路5047号深圳发展银行大厦17层H-I室	邮编: 518001	电话: (0755) 25841022	传真: (0755) 82080250
■ 泰州办事处 ————————————————————————————————————	江苏省泰州市江洲南路111号中丹宾馆328房间	邮编: 225300	电话: (0523) 86995328	传真: (0523) 86995326
■ 扬中办事处 ■ 贵阳办事处	扬中市前进北路52号扬中宾馆2018号房间 贵阳市中华南路49号贵航大厦1204室	邮编: 212000	电话: (0511) 88398528 电话: (0851) 5887006	传真: (0511) 88398538 传真: (0851) 5887009
· 		дрэщ: 000003		传真: (00852) 28111029
■ 施耐德(香港)有限公司 	香港鲗鱼涌英皇道979号太古坊和域大厦13楼东翼	邮编: 100016	电话: (00852) 25650621 电话: (010) 84346699	传真: (00852) 28111029
一 心则忘记(广当听修手先	北京市朝阳区将台路2号和乔丽晶中心施耐德电气大厦	щрэщ: 100010		17共: (010) 04301130

施耐德电气

Schneider Electric China www.schneider-electric.cn 北京市朝阳区将台路2号 邮编: 100016

电话: (010) 8434 6699 传真: (010) 8450 1130

和乔丽晶中心施耐德电气大厦 No.2 Jiangtai Road, Chaoyang District Beijing 100016, China

Tel: (010) 8434 6699 Fax: (010) 8450 1130

Schneider Electric Building, Chateau Regency, 由于标准和材料的变更,文中所述特性和本资料中的图像只有经过我们的 业务部门确认以后,才对我们有约束。

本手册采用生态纸印刷

SCDOC1101-LV 2008.08